Scattering theory for differential operators, II, self-adjoint elliptic operators
نویسندگان
چکیده
منابع مشابه
Non-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملSpectral Theory for Compact Self-Adjoint Operators
This agrees with the definition of the spectrum in the matrix case, where the resolvent set comprises all complex numbers that are not eigenvalues. In terms of its spectrum, we will see that a compact operator behaves like a matrix, in the sense that its spectrum is the union of all of its eigenvalues and 0. We begin with the eigenspaces of a compact operator. We start with two lemmas that we w...
متن کاملAdjoint and self - adjoint differential operators on graphs ∗
A differential operator on a directed graph with weighted edges is characterized as a system of ordinary differential operators. A class of local operators is introduced to clarify which operators should be considered as defined on the graph. When the edge lengths have a positive lower bound, all local self-adjoint extensions of the minimal symmetric operator may be classified by boundary condi...
متن کاملFeynman’s Operational Calculi: Spectral Theory for Noncommuting Self-Adjoint Operators
The spectral theorem for commuting self-adjoint operators along with the associated functional (or operational) calculus is among the most useful and beautiful results of analysis. It is well known that forming a functional calculus for noncommuting self-adjoint operators is far more problematic. The central result of this paper establishes a rich functional calculus for any finite number of no...
متن کاملScattering Matrix and Functions of Self-adjoint Operators
In the scattering theory framework, we consider a pair of operators H0, H. For a continuous function φ vanishing at infinity, we set φδ(·) = φ(·/δ) and study the spectrum of the difference φδ(H − λ)− φδ(H0 − λ) for δ → 0. We prove that if λ is in the absolutely continuous spectrum of H0 and H, then the spectrum of this difference converges to a set that can be explicitly described in terms of (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1973
ISSN: 0025-5645
DOI: 10.2969/jmsj/02520222